Code: CS7T4D

IV B.Tech - I Semester – Regular/Supplementary Examinations March - 2021

ADVANCED COMPUTER ARCHITECTURE (COMPUTER SCIENCE & ENGINEERING)

Duration: 3 hours Max. Marks: 70

PART - A

Answer all the questions. All questions carry equal marks

 $11 \times 2 = 22 \text{ M}$

1.

- a) Define Parallel Processing.
- b) Describe RISC Pipeline.
- c) What is signed binary?
- d) What are the applications of vector processing?
- e) Give the Hardware Implementation of Division Algorithm.
- f) Define MIPS Rate.
- g) Give the Flynn's classification of Computer Architecture.
- h) Define CISC scalar processor.
- i) Define Superscalar processor.
- j) List various phases of Instruction execution.
- k) What is the purpose of Delay Insertion?

PART - B

Answer any <i>THREE</i> questions.	All questions carry equal marks.
	$3 \times 16 = 48 \text{ M}$

3 X 10	- +0 IVI
2. a) Define Vector Processing. Explain memory interleave vector processing.	ring in 8 M
b) What is an instruction pipeline? Explain the types of instruction pipeline conflicts with examples.	8 M
3. a) Explain the hardware implementation of Multiplicati Algorithm.	on 8 M
b) Draw a flowchart for multiplication of two fixed point binary numbers in signed magnitude representation.	nt 8 M
4. a) Explain the various types of Parallel processing mod	els. 8 M
b) What is the function of SIMD Super computers?	8 M
5. a) Explain the Instruction Set Architecture.	6 M
b) Explain the RISC scalar processor.	10 M
6. a) Explain Asynchronous and Synchronous model of La Pipeline Processor.	inear 10 M

10 M

b) Explain Branch Handling Techniques. 6 M